Skip to main content

About

I am a first year PhD student at University of Cambridge studying and working on data analysis for 21-cm Cosmology experiments. I previously did an integrated Masters Degree at the University of Manchester in Physics with Astrophysics.

I am interested in Cosmology, Data Analysis, Galaxies, Radio Astronomy.

All of the codes I am writing for this blog are written in Python3 (unless otherwise stated) on a Ubuntu Linux system. They are available at: https://github.com/htjb/Blog

You can follow updates on my blog on Instagram at @astroanddata.

Opinions are all my own.

Popular posts from this blog

Random Number Generation: Box-Muller Transform

Knowing how to generate random numbers is a key tool in any data scientists tool box. They appear in multiple different optimisation routines and machine learning processes. However, we often use random number generators built into programming languages without thinking about what is happening below the surface. For example in Python if I want to generate a random number uniformally distributed between 0 and 1 all I need to do is import numpy and use the np.random.uniform() function. Similarly if I want gaussian random numbers to for example simulate random noise in an experiment all I need to do is use np.random.normal(). But what is actually happening when I call these functions? and how do I go about generating random numbers from scratch? This is the first of hopefully a number of blog posts on the subject of random numbers and generating random numbers. There are multiple different methods that can be used in order to do this such as the inverse probability transform method and I

LDL Decomposition with Python

I recently wrote a post on the Cholesky decomposition of a matrix. You can read more about the Cholesky decomposition here;  https://harrybevins.blogspot.com/2020/04/cholesky-decomposition-and-identity.html . A closely related and more stable decomposition is the LDL decomposition which has the form, $\textbf{Q} = \textbf{LDL*}$, where $\textbf{L}$ is a lower triangular matrix with diagonal entries equal to 1, $\textbf{L*}$ is it's complex conjugate and $\textbf{D}$ is a diagonal matrix. Again an LDL decomposition can be performed using the Scipy or numpy linear algebra packages but it is a far more rewarding experience to write the code. This also often leads to a better understanding of what is happening during this decomposition. The relationship between the two decompositions, Cholesky and LDL, can be expressed like so, $\textbf{Q} = \textbf{LDL*} = \textbf{LD}^{1/2}(\textbf{D})^{1/2}\textbf{*L*} = \textbf{LD}^{1/2}(\textbf{LD}^{1/2})\textbf{*}$. A simple way to calcu

Random Number Generation: Inverse Transform Sampling with Python

Following on from my previous post, in which I showed how to generate random normally distributed numbers using the Box-Muller Transform, I want to demonstrate how Inverse Transform Sampling(ITS) can be used to generate random exponentially distributed numbers. The description of the Box-Muller Transform can be found here:  https://astroanddata.blogspot.com/2020/06/random-number-generation-box-muller.html . As discussed in my previous post random numbers appear everywhere in data analysis and knowing how to generate them is an important part of any data scientists tool box. ITS takes a sample of uniformly distributed numbers and maps them onto a chosen probability density function via the cumulative distribution function (CDF). In our case the chosen probability density function is for an exponential distribution given by, $P_d(x) = \lambda \exp(-\lambda x)$. This is a common distribution that describes events that occur independently, continuously and with an average constant rate, $\