Skip to main content

About

I am a first year PhD student at University of Cambridge studying and working on data analysis for 21-cm Cosmology experiments. I previously did an integrated Masters Degree at the University of Manchester in Physics with Astrophysics.

I am interested in Cosmology, Data Analysis, Galaxies, Radio Astronomy.

All of the codes I am writing for this blog are written in Python3 (unless otherwise stated) on a Ubuntu Linux system. They are available at: https://github.com/htjb/Blog

You can follow updates on my blog on Instagram at @astroanddata.

Opinions are all my own.

Popular posts from this blog

LDL Decomposition with Python

I recently wrote a post on the Cholesky decomposition of a matrix. You can read more about the Cholesky decomposition here;  https://harrybevins.blogspot.com/2020/04/cholesky-decomposition-and-identity.html . A closely related and more stable decomposition is the LDL decomposition which has the form, $\textbf{Q} = \textbf{LDL*}$, where $\textbf{L}$ is a lower triangular matrix with diagonal entries equal to 1, $\textbf{L*}$ is it's complex conjugate and $\textbf{D}$ is a diagonal matrix. Again an LDL decomposition can be performed using the Scipy or numpy linear algebra packages but it is a far more rewarding experience to write the code. This also often leads to a better understanding of what is happening during this decomposition. The relationship between the two decompositions, Cholesky and LDL, can be expressed like so, $\textbf{Q} = \textbf{LDL*} = \textbf{LD}^{1/2}(\textbf{D})^{1/2}\textbf{*L*} = \textbf{LD}^{1/2}(\textbf{LD}^{1/2})\textbf{*}$. A simple way to calcu...

Subplots with Matplotlib

As already discussed in some of my previous articles good visualisation of data is essential to getting the associated message across. One aspect of this is the need to plot multiple data sets or visualise the same data set in different ways on the same figure. For example we may wish to illustrate our data and the residuals after we subtract a fit to that data all in the same figure. This can be effectively done using matplotlib and the associated subplots environments. Mastery of these tools is something that comes very much with practice and I do not claim to be an expert. However, I have some experience with the environment and I will share with you the basics in this article. In order to use the matplotlib environment we will need to begin by importing matplotlib via, import matplotlib.pyplot as plt We can then proceed to explore what is on offer. plt.subplot() and plt.subplots() So plt.subplots() and plt.subplot() are probably where most people begin to learn about the idea of c...

Random Number Generation: Inverse Transform Sampling with Python

Following on from my previous post, in which I showed how to generate random normally distributed numbers using the Box-Muller Transform, I want to demonstrate how Inverse Transform Sampling(ITS) can be used to generate random exponentially distributed numbers. The description of the Box-Muller Transform can be found here:  https://astroanddata.blogspot.com/2020/06/random-number-generation-box-muller.html . As discussed in my previous post random numbers appear everywhere in data analysis and knowing how to generate them is an important part of any data scientists tool box. ITS takes a sample of uniformly distributed numbers and maps them onto a chosen probability density function via the cumulative distribution function (CDF). In our case the chosen probability density function is for an exponential distribution given by, $P_d(x) = \lambda \exp(-\lambda x)$. This is a common distribution that describes events that occur independently, continuously and with an average constant rate...